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The material properties of biomembranes can be measured by forming a tether, a thin bilayer tube that
extends from the membrane surface. Recent experiments have demonstrated that the force required to maintain
a tether is sensitive to the transmembrane potential. As a first approach towards understanding this phenom-
enon, a thermodynamic analysis of the influence of electrical fields on tether formation from an aspirated lipid
vesicle is developed. The analysis considers contributions from Maxwell stresses as well as two forms of
electromechanical coupling: coupling between the electric field and curvature strain �flexoelectric coupling�
and between the electric field and areal strain �piezoelectric coupling�. Predictions of equilibrium tether con-
formations are obtained numerically. For expected values of the dimensionless coupling parameters, flexoelec-
tric coupling alters the force required to form a tether of a given length, while piezoelectric coupling and
Maxwell forces do not greatly change the force versus tether length behavior. The results of this analysis
indicate that tether experiments have the potential to characterize electromechanical coupling in both synthetic
and cellular membranes.

DOI: 10.1103/PhysRevE.72.041926 PACS number�s�: 87.16.Dg, 87.16.Ac, 87.10.�e

I. INTRODUCTION

Lipid membranes serve as a crucial component of many
fundamental cellular processes such as endocytosis, intracel-
lular trafficking, signaling, and division. Because these pro-
cesses involve extensive lipid bilayer deformations, many
basic advancements in biology and ultimately medicine de-
pend upon understanding how lipid membranes respond to
changes in mechanical, chemical, and electrical environ-
ments. This understanding can also aid in the development
and implementation of biocompatible nanoelectromechanical
systems.

One method to characterize the mechanical properties of
lipid bilayers is to analyze the equilibrium conformation of a
long, thin bilayer tube formed from the membrane surface.
This tube, termed a tether, is created by pulling an attached
silica bead away from the bilayer surface. The resulting
tether length and radius depend upon the applied force as
well as the membrane tension and material properties �1–3�.
Analyses of tether experiments have provided sensitive mea-
surements of the local bending stiffness of the membrane
�1,2,4–6�. The local bending stiffness reflects the resistance
of each monolayer to curvature changes. In addition, tether
experiments have provided a quantitative confirmation of the
area difference elasticity theory �1,2,5,7,8�. According to this
theory, if the constituents of each monolayer redistribute to
relieve local strains, curvature deformations lead to a relative
tension difference between the two leaflets �9–11�. The
modulus associated with this form of elasticity is the nonlo-
cal bending stiffness.

Models of tether formation from aspirated, synthetic bi-
layers provide a foundation for the interpretation of tether
formation experiments on cellular membranes. Tether experi-
ments have characterized a number of material properties of
cellular membranes such as the bending stiffness, apparent
tension, and membrane-cytoskeleton adhesion energy
�3,12–14�. As cells maintain a transmembrane potential and

also possess an asymmetric distribution of charged lipids and
proteins, determining how electrical fields affect tether con-
formation will help to characterize the electromechanical
properties of cellular membranes. For example, the protein
prestin, found in cochlear outer hair cells, imparts unique
electromechanical properties to cellular membranes �15�. In
recent experiments, the voltage clamp technique has been
combined with optical tweezers to control the transmem-
brane potential during tether formation from cellular mem-
branes. These experiments revealed that in prestin-
transfected human embryonic kidney cells the tether force
depends upon the holding potential �16�.

A full interpretation of these results requires an under-
standing of how different electromechanical phenomena con-
tribute to equilibrium tether conformations. The influence of
applied electric fields on tether equilibrium has not been con-
sidered theoretically. Applied electric potentials may alter
membrane conformation by a number of mechanisms includ-
ing electrocompression and electromechanical coupling.

Applied charges compress the membrane and thus change
membrane tension. The electrocompressive tension due to an
applied voltage is derived from the Maxwell stress tensor
and is proportional to the specific membrane capacitance Cm
�17�. Maxwell stresses describe deformation of lipid vesicles
in electric fields greater than typical physiological values
�18,19�.

Distinct from electrocompressive forces which depend
upon the square of the applied field, electromechanical cou-
pling phenomena depend upon an odd power of the field.
One form of electromechanical coupling, flexoelectricity, oc-
curs in asymmetric liquid crystalline materials �20�; experi-
mental evidence suggests lipid bilayer membranes also ex-
hibit this phenomenon �21,22�. According to this theory,
altering the curvature or transmembrane potential creates a
dipole or monopole �charge� asymmetry. Consequently,
bending a bilayer changes the membrane polarization
�21,23,24�; conversely, changing the applied field changes
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the membrane curvature �21�. Since curvature creates a ma-
terial asymmetry, both symmetric and asymmetric bilayers
are predicted to exhibit flexoelectricity �21,23,25�. In
addition, asymmetric bilayers are predicted to manifest
piezoelectricity, coupling between areal strain and the
applied field �21�.

To determine how these phenomena affect tether confor-
mation, the energies of flexoelectric and piezoelectric
coupling have been included in a thermodynamic analysis of
tether formation from an aspirated vesicle. The contributions
due to electrocompressive tensions are considered as
well. We have chosen to analyze the aspirated vesicle be-
cause it is a simple, well-studied system �1,7�. The analysis
indicates tether formation experiments may provide a novel
method to test and characterize membrane electromechanical
properties.

II. MODEL

In the experiment analyzed, a giant unilamellar vesicle is
aspirated by a micropipette. Aspiration modulates the mem-
brane tension and reduces the extent of the thermal undula-
tions �26�. We consider a conceptual scenario in which the
transmembrane potential can be controlled, possibly by in-
serting an electrode into a pipette containing a membrane
perforator such as nystatin �27–29�. To form the tether, a
force F is applied to the opposite side of the vesicle by an
optical or magnetic force transducer. The aspirated vesicle-
tether region is the system, and work is done at the bound-
aries via pressure in the pipette, the applied force, and the
applied electric field.

Because the tether length-to-diameter ratio is large, the
transmembrane potential may decrease along the tether. The
decrease in potential estimated using a time-independent so-
lution of the cable equation for a core conductor. If the
vesicle contains a small amount of internal electrolyte �
�5 mM�, the calculated potential attenuation along a
200 �m tether is approximately 5% �see the Appendix�.
Smaller decreases are predicted for typical values of cellular
membrane conductance and cytoplasmic resistivity. Given
these results, the electric potential will be considered inde-
pendent of length for tethers less than 200 �m long.

Following an approach developed by Božič et al. �7�, the
vesicle shape is parametrized into three regions: a cylindrical
pipette projection of length Lp and radius Rp, a spherical
vesicle of radius Rv, and a cylindrical tether of length Lt and
radius Rt �Fig. 1�. The end of the projection length is ap-
proximated as a cylindrical cap of radius Rp.

The total area is approximated as

A = − �Rp
2 + 2�LpRp + 4�Rv

2 + 2�LtRt. �1�

The first term of Eq. �1� approximates the shared surface area
at the intersection of the cylinder and sphere. Given Rt�Rv,
the volume of the tether may be neglected and the total vol-
ume expressed as �7�

V = −
�

3
Rp

3 + �LpRp +
4�

3
Rv

3. �2�

where the first term is the difference between the volume of
a cylinder of length Lp and a hemispherical cap of radius Rp.
To account for excess surface area, the parameter v is intro-
duced to relate the volume to the surface area of the vesicle,
v=3V0 /4�R3 where A0=4�R2. Under a constant volume
constraint �V=V0�, the projection length can be expressed in
terms of the vesicle radius �7�:

Lp =
1

�Rp
2�V0 +

�

3
Rp

3 −
4�

3
Rv

3� . �3�

In previous analyses, a constant-area constraint with a
Lagrange multiplier proportional to the area expansivity
modulus was used �7,30,31�. Since electrically induced ten-
sions may alter membrane area, we have relaxed this con-
straint.

Equilibrium conformations are predicted by determining
the stability points of the extended energy variational,
��=�G−�W �32,33�. For isothermal deformations, G is the
electric Gibbs energy and W accounts for the external me-
chanical and electrical loads applied to the vesicle. Equilib-
rium tether conformations satisfy the following variational
equation: �G−�W=0. From the principles of virtual work,

W = FLt + �P�Rp
2L , �4�

where F is the tether force and �P is the aspiration pressure.
In the original tether experiments on aspirated vesicles,

the aspiration pressure in the pipette was varied while the
force was held constant �7�. Since later experimental ad-
vancements permitted the force to be varied as well �4�, equi-
librium predictions for both experimental cases are consid-
ered in this analysis.

For isothermal deformations, the electric Gibbs energy
density �J /m2� of a lipid bilayer is

G̃ =
1

2
�	2 +

1

2
kcc̄

2 +
1

2

kr

d2 ��A − �A0�2 + G̃E. �5�

The first term is the bilayer area dilation energy density
where � is the area expansivity modulus and 	 is the percent
change in the total area ��A−A0� /A0�.

The second term of Eq. �5�, the local bending energy den-
sity, accounts for each individual monolayer’s resistance to a
change in curvature, c̄. Because the curvature of the tether is
much larger than any other region of the vesicle, this term is
only integrated over the tether area �7�. Under this condition,
c̄=1/Rt.

The third term of Eq. �5� is the nonlocal bending energy
density that arises from area-difference elasticity. Here, kr is
the nonlocal bending modulus and d is the separation dis-
tance between the neutral surfaces of the two monolayers

FIG. 1. Tether formation from an aspirated vesicle.
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�10,11�. For tether formation, the relative area difference �A
is estimated from the difference between the area of the inner
�2�Lt�Rt−d /2�� and outer tether leaflets �2�Lt�Rt+d /2��.
Applying these approximations, the nonlocal bending energy
becomes 2�2kr�Lt−Lt

*�2 /A0. The parameter Lt
* is included to

account for a possible initial area difference between the
leaflets �1,7�. For this analysis, Lt

*=0.
The final term of Eq. �5� includes the energy densities of

flexoelectric and piezoelectric coupling as well as the electric
field energy density:

G̃E = − f c̄E − eE	 −
1

2
h

0E2. �6�

Here f is the flexoelectric coupling coefficient, e is the pi-
ezoelectric coupling coefficient, 

0 is the dielectric constant
of the bilayer times the permittivity of free space, E is the
membrane electric field, and h is the membrane thickness.
Given that the tether curvature is several orders of magnitude
larger than the other regions of the vesicle, the flexoelectric
energy is integrated only over the tether area. Multiplying the
final term of Eq. �6� by the total bilayer area provides the
energy due to electrocompression of the bilayer �17,34�. The
contributions of each of these three terms to equilibrium
tether conformation are considered separately.

Integrating the energies of Eq. �5� over the appropriate
area provides an expression for the full variational in terms
of Lt, Rt, Rv, and E:

� =
1

2
�

�A − A0�2

A0
+ �kc

Lt

Rt
+ 2�2kr

�Lt − Lt
*�2

A0
− eE�A − A0�

− 2�fELt −
1

2
h

0E2A − FLt − �P�Rp

2L2. �7�

It is instructive to express Eq. �7� in dimensionless form. For
a characteristic length R=�A0 /4� and an energy scale deter-
mined by the bending energy of a sphere �8�kc� �35�, Eq. �7�
becomes

�̃ =
�R2

4kc
�a − 1�2 +

1

8

lt

rt
+

1

16

kr

kc
�lt − lt

*�2 − Ep�a − 1� − E flt

− EM
2 a − Flt − �prp

2lp, �8�

where the dimensionless area a �A /4�R2� is expressed in
terms of the dimensionless tether-vesicle variables �lt=Lt /R,
rt=Rt /R, rv=Rv /R, lp=Lp /R, and rp=Rp /R�: a=rv

2 +rtlt /2
+ lprp /2−rp

2 /4−1. Note for the length scale chosen, a0=1.
The piezoelectric and flexoelectric coupling and Maxwell
force parameters are, respectively,

Ep =
eR2

2kc
E, E f =

fR

4kc
E, EM = RE�h

0

4kc
.

The dimensionless mechanical force and pressure are

F =
FR

8�kc
, �p =

�PR3

8kc
.

Equilibrium tether conformations for a given field E can be
predicted by finding the stability points of Eq. �7� or �8�. At
a stability point, the first partial derivatives of Eq. �8� taken

with respect to lt, rt, and rv are equal to zero ����lt ,rt ,rv�
=0�. This provides the following system of equations which
can be solved to determine equilibrium tether conformations:

��̃

�lt
= 	�Rs

2

kc2
�a − 1� − Ep − EM

2 
 rt

2
+

1

8rt
+

1

8

kr

kc
�lt − lt

*� − E f

− F = 0, �9a�

��̃

�rt
= 	�Rs

2

kc4
�a − 1� − Ep − EM

2 
� lt

2
� −

1

8

lt

rt
2 = 0, �9b�

��̃

�rv
= ��Rs

2

kc4
�a − 1� − Ep − EM

2 ��2rv −
2rv

2

rp
� + 4rv

2�p = 0.

�9c�

Solutions were obtained numerically using a modified quasi-
linearization algorithm, a variant of the Newton-Raphson
method in which the step size is adjusted iteratively by bi-
section to ensure the error is reduced �36,37�.

Including electromechanical energies into the thermody-
namic analysis modifies the equations derived in previous
analyses of tether equilibrium �7�. The contribution of flexo-
electric coupling to the tether force can be determined by
combining the dimensional form of Eqs. �9a� and �9b�:

Fef f =
2�kc

Rt
+

4�2krLt

A0
. �10�

Inclusion of the flexoelectric coupling energy adds a new
term to the effective force Fef f previously defined �7�:
Fef f�E�=F+4�krLt

* /A0+2�fE. Coupling between mem-
brane curvature and the electric field shifts the mechanical
force F needed to maintain a tether of a given length by
2�fE.

The contributions of piezoelectric coupling and Maxwell
forces to tether equilibrium become apparent upon rearrange-
ment of Eq. �9c� in dimensional form:

T̄ =
Rv�P

2

Rp

�Rv − Rp�
+

1

2
h

0E2. �11�

Here the isotropic tension T̄ satisfies the thermodynamic re-

lation: T̄=�G̃ /�	=�	−eE. Equation �11� is of the same
form as the equation for the tension of an aspirated vesicle;
piezoelectric coupling modifies the tension term on the left-
hand side and Maxwell forces contribute to the applied load
on the right-hand side �38�.

Here, we investigate how the effective electromechanical
parameters alter tether conformation. The model is applied to
the two experimental conditions mentioned earlier: constant
force and constant pressure.

III. RESULTS

Equilibrium tether conformations were determined
for typical vesicle dimensions and membrane material pa-
rameters. The following values were used for all calcula-

ELECTROMECHANICAL EFFECTS ON TETHER… PHYSICAL REVIEW E 72, 041926 �2005�

041926-3



tions: �=0.180 N/m, kc=1.0�10−19 J, kr=3.6�10−19 J,
A0=4��10−10 m2, v=0.75, and Rp=3.5 �m. To determine
the extent area expansivity changes equilibrium tether con-
formation, the numerical results in which E=0 are compared
to the solutions in which the constant area constraint was
applied. The differences due to area expansion are not large
enough to be discerned experimentally. These results support
the constant area approximation applied in previous tether
analyses �1,7,30,39�.

To determine the relative contributions of each form of
electromechanical energy, plots are provided in dimension-
less form. For both experimental conditions, the contribution
of all three electromechanical parameters to either the equi-
librium force or pressure required to maintain the tether at a
constant length is determined. In addition, the relationship
between lp and lt is plotted for several values of each dimen-
sionless electromechanical parameter. For a membrane under
voltage clamp, the values of the electromechanical param-
eters are calculated under the boundary condition E=� /h
where h is the membrane thickness �5 nm� and � is the
applied potential. This condition has been applied for previ-
ous calculations of the converse flexoelectric coefficient of
lipid bilayers �24� and the piezoelectric coefficient of the
outer hair cell membrane �40�. For all three electromechani-
cal parameters, dimensional plots are also included as spe-
cific experimentally relevant examples. In these plots, the
dependence of the tether length on the applied force and
transmembrane potential is provided.

A. Maxwell forces

To determine how Maxwell forces affect tether conforma-
tion, the electrocompressive energy was introduced into the
Gibbs energy density. For typical values of the specific mem-
brane capacitance �

0 /h1 �F/cm2�, no significant
changes in tether conformation are predicted for values of Em
which span physiologically relevant potentials. The contribu-
tion of Em to tether conformation is shown in Figs. 2 and 3.
When Em is increased from 0 to 1000, lp increases by 5% in
both experimental cases. In the constant-pressure case, F
increases by less than 1% �Fig. 2�A�� and similarly, in the
constant force condition, �p decreases by less than 2% �Fig.
2�C��. The plots in Fig. 2 show the dependence of F on Em
for tethers of different fixed lengths. In Fig. 3�A�, a dimen-
sional plot of the dependence of tether length of both � and
F is given.

B. Flexoelectric coupling

To determine the extent to which flexoelectric effects in-
fluence tether behavior, the coupling energy was introduced
into the electric Gibbs energy density. Minimization of Eq.
�8� indicates that coupling coefficients on the order of those
measured for lipid bilayers can affect tether conformation
�Fig. 3�B��. For a vesicle with a typical flexoelectric coeffi-
cient of 2�10−19 C �21� under a 100-mV potential, the di-
mensionless flexoelectric parameter E f is 10. For coupling
parameters of this magnitude, flexoelectric coupling changes
the force required to form a tether of a given length �Fig.
4�A��. For the constant-pressure case, the coupling does not

significantly alter the relation between the lp and lt �Fig.
4�B��. Experimentally, this relation is used to calculate the
tether radius �1�. The predictions for the constant force tether
formation case are given in Figs. 4�C� and 4�D�. In this case,
flexoelectric coupling alters the pressure required to maintain
a tether of a given length. The differences in the slopes of lp
vs lt curves reflect different tether radii arising from the dif-
ferent aspiration pressures. A dimensional example of the
dependence of the tether length on the tether force and ap-
plied potential is also provided in Fig. 3�B�.

C. Piezoelectric coupling

Inclusion of the piezoelectric coupling energy into Eq. �8�
alters the predicted equilibrium tether conformation for both
experimental conditions. For a bilayer with a bending stiff-
ness of 1.0�10−19 J and an expected piezocoefficient of
10−12 C/m �25�, the dimensionless coupling parameter Ep for
a 100-mV transmembrane potential is 104. For a piezoelec-
tric coupling parameter of this magnitude, virtually no
change in tether force is predicted �Figs. 3�C� and 5�A��. If
Ep is increased by two orders of magnitude �106�, small, but
observable, changes in tether force and aspiration pressure
are predicted �Figs. 5�A� and 5�C��. For both constant-force
and constant-pressure conditions, the coupling parameter
changes lp �Figs. 5�B� and 5�D�� but does not alter the slope
of lp vs lt.

IV. DISCUSSION

Inclusion of the electromechanical energies into the ther-
modynamic potential of tether formation changes the pre-
dicted minimum-energy conformation. The extent of the
change in tether conformation depends upon the magnitude
of the coefficient and the type of coupling considered. For
typical values of the membrane capacitance and transmem-
brane potentials within a physiological range, electrocom-
pressive effects do not greatly change the minimum-energy
tether conformation. Experimentally discernable effects are
predicted for flexoelectric parameters which span previously
measured values of f . Only piezoelectric coupling param-
eters which correspond to large values of e ��10−10 C/m�
are expected to lead to observable changes in tether
conformation.

The manner in which the two forms of coupling affect
tether conformation is reflected by the thermodynamic con-
stitutive relationships for membrane tension and bending
moment. Flexoelectric coupling alters the membrane bending
moment M: M =kcc̄+kr	± /h− fE �25,41�. Since the tether
force is 2�M �6,42�, the change in equilibrium tether force
reflects the flexoelectric contributions to the bending mo-
ment. Piezoelectric coupling, on the other hand, changes the
relationship between area expansion and membrane tension:
T=�	−eE. Because the pipette aspiration pressure controls
the membrane tension, piezoelectric coupling will lead to
changes in membrane area. For a fixed-tension case such as
the one considered in this paper, piezoelectric coupling is not
expected to greatly change the tether force. Although large
piezoelectric parameters can theoretically lead to small
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changes in tether force �Fig. 5�, the accompanying areal ex-
pansion allows the contributions of a large piezoelectric pa-
rameter to be distinguished from those of a small flexoelec-
tric parameter �Figs. 4 and 5�. Since analyses of tether
experiments conducted on cellular membranes rely upon
models of synthetic systems, this analysis provides a theoret-
ical foundation towards understanding how different electro-
mechanical phenomena affect tether conformation.

The most interesting result of this analysis is that flexo-
electricity can potentially have a discernible effect on tether
conformation. Previous measurements of the flexoelectric
coefficient have been conducted on black lipid membranes
and membrane patches �22�. For these experiments, the ra-
dius of curvature is typically on the order of �5 �m. Since
equilibrium tether radii are at least an order of magnitude
smaller, tether formation can provide a new method to ex-
plore the effects of flexoelectric coupling on highly curved
biological structures. Since the predicted equilibrium tether
length is sensitive to flexoelectric energy, tether experiments

should provide an ideal test of the flexoelectric hypothesis.
The magnitude of the flexoelectric coefficient of a mem-

brane depends upon membrane composition as well as the
frequency of the applied stimulation. When a bilayer mem-
brane bends, the outer leaflet expands and the inner leaflet
compresses. The resulting differential density of the two leaf-
lets relaxes by mechanically driven slip opposed by viscous
dissipation at the bilayer midplane �2,5�. Under high-
frequency changes in either curvature or applied field, the
differential density may not fully relax. Thus, the membrane
will bend as if the two leaflets were connected to each other.
Depending upon the lipid species, the coefficients range in
magnitude from 10−20 to 10−18 C for frequency changes
greater than 200–300 Hz �21�. For lower-frequency stimula-
tions, the lipids have more time to diffuse into or out of the
curved region to relieve the local differential density induced
by bending. Since each individual monolayer will bend
around its own neutral surface rather than the bilayer neutral
surface, the coupling coefficients for lower-frequency stimu-

FIG. 2. �Color online� Maxwell forces are predicted to have little effect on tether formation for both constant pressure and force
conditions. For the constant-pressure case �plots �A� and �B��, �p=1.25�105; for the constant-force case �plots �C� and �D��, F=200. The
dependence of the force and pressure on the value of Em is plotted for four values of lt: �a� 1, �b� 5, �c� 10, and �d� 20. Changing the value
of Em does not appreciably alter the slope of the lp vs lt curves �plots �B� and �D��. For these plots, the values of Em are �e� 0, �f� 200, �g�
500, and �h� 1000.
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lations are less than those of higher frequencies �21�. This
implies that applying high-frequency voltage stimulation will
enhance the flexoelectric response of a membrane tether.

Because cellular membranes are composed of an asym-
metric distribution of charged lipids and polar proteins, the
flexocoefficients can be quite large. The high-frequency co-
efficients of a patch of locust muscle membrane, for ex-
ample, are on the order of 10−18 C �21�. For a coefficient of
this magnitude, lower-frequency stimulations should affect
tether conformation. In fact, tethers formed from prestin-
transfected HEK cells exhibit voltage sensitivity during dc
stimulation �16�.

Charge and dipole asymmetries are expected to confer
piezoelectric properties to cellular membranes. From mono-
layer measurements, the piezoelectric coefficient of lipid bi-
layers is estimated to be of the order of 10−12 C/m �21�. This
is too small to cause measureable changes in the tether-
vesicle conformation. Just as for flexoelectric effects, inte-
gral membrane proteins could potentially increase the piezo-
electric modulus.

One protein which augments membrane electromechani-
cal coupling properties is prestin. This unique integral mem-
brane protein is responsible for the voltage-dependent length
changes and signature nonlinear capacitance of outer hair
cells �15,43�. The outer hair cell electromotile response am-
plifies the motion of the basilar membrane and is required for
normal auditory sensation. How prestin confers electromotil-
ity to the membrane is a subject of active debate. A number
of theories describe voltage-induced changes in cell length
using both linear and nonlinear piezoelectric-type ap-
proaches �44–54�. Macroscale analysis of the whole-cell de-
formation provides a linear piezoelectric coupling coefficient
on the order of 10−3 N/V m �47,48�. Multiplied by the mem-
brane thickness �5 nm�, this is equivalent to a coupling co-
efficient of 10−12 C/m. Other models suggest that instead of
expanding membrane area, prestin changes the membrane
curvature via a flexoelectric mechanism �41�. For this model,
a flexoelectric coefficient of 10−19 C is sufficient to explain
whole-cell deformation. Currently, these two models can not
be distinguished experimentally. As this current analysis in-
dicates that the two forms of electromechanical coupling af-
fect tether conformation differently, tether experiments may
be used to explore the properties of electroactive proteins
such as prestin. Determining the extent to which electrome-
chanical phenomena affect membrane conformation will help
to deepen understanding of the role of electrostatic forces in
diverse cellular events.
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APPENDIX

Spatial attenuation of the transmembrane potential

Spatial attenuation of the transmembrane potential along a
cylindrical core conductor can be described by the cable

FIG. 3. �Color online� Influence of �A� Maxwell forces
�Cm=100 �F/cm2�, �B� flexoelectric �f =10−20 C�, and �C� piezo-
electric coupling �e=10−10 C/m� on the tether length for a range of
transmembrane potentials and tether forces. The simulations are for
the constant-pressure experimental condition in which �P=60 Pa.
Note that large values of Cm and e are chosen to show the trends for
Maxwell forces and piezoelectricity.
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equation �55,56�. If the resistance per unit length of the outer
conductor is much less than that of the inner conductor, the
space constant can be approximated as

�C � �a/2�iGm, �A1�

where �i is the resistivity of the core of the conductor, Gm is
the specific membrane conductance, and a is the radius of the
cable. The conductance of synthetic lipid bilayers is small,
typically on the order of 10−3 S/m2 �57�. The resisitivity
depends upon the electrolyte concentration inside of the
vesicle. For 5 mM NaCl, the resisitivity is 17 � m �58�. Due
to the interest in the electromechanical properties of the outer
hair cell �OHC� membrane, we have also calculated the
space constant for a tether formed from an OHC. The space
constant is estimated using the specific conductance of the
outer-hair-cell lateral wall �Gm=0.01 S/m2� and the cyto-
plasmic resistivity ��i=0.070 � m� �59�. Using these values,
�C for a 10-nm radius tether is �840 �m.

Semi-infinite cable

For a semi-infinite cable �0z +�� in which no addi-
tional voltage or current is applied along its length and
vm�0�=�, the following unique solution holds �55�:

vm�z� = �e−z/�C. �A2�

The semi-infinite cable approximation is valid for cables
longer than 4 times the space constant. The spatial potential
attenuation for a semi-infinite cable is plotted in Fig. 6.

Finite cable

If the length of the cable is less than 4�C, then the length
of the cable L and the boundary conditions at the end of the
cable must be considered. If the end of the cable is sealed
�i.e., negligible current flows though the end of the cable�,
then an open-circuit approximation may be applied, where
dvm /dz=0 at z=L. For vm�0�=�, a unique solution is

FIG. 4. �Color online� Numerical predictions of the influence of flexoelectic coupling on the conformation of tethers formed under two
different conditions: constant pressure �p=1.25�105 ��A� and �B�� and constant force F=200 ��C� and �D��. The lp vs lt curves are plotted
for four values of E f: �e� 0, �f� 1, �g� 10, and �h� −10. The dependence of the dimensionless force and pressure on the value of the E f is plotted
for three values of lt: �a� 1, �b� 10, and �c� 20. Note that all three tether lengths are graphed in plot �B�.
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vm� z

�C
� =

� cosh� L

�C
−

z

�C
�

cosh� L

�C
� . �A3�

The potential decrease along the length of a finite cable is
plotted in Fig. 6.
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FIG. 6. �Color online� Spatial decay of potential along a finite
and semi-infinite cable. The attenuation of the potential along
a finite 200-�m cable is plotted for three values of the space
constant. The space constants for a tether formed from a synthetic
bilayer are �a� �c=250 �m for a NaCl concentration of 0.5 mM
�Gm=10−3 S/m2, �i=16 � m� and �b� �c=542 �m for a NaCl con-
centration of 5 mM �Gm=10−3 S/m2, �i=1.7 � m�. The estimated
space constant for an outer hair cell tether is �c� 845 �m. The
semi-infinite cable solution �d� is plotted for �c=250 �m. All space
constants are calculated for a tether radius of 10 nm.
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